Patterns of Text Readability in Human and Predicted Eye Movements


It has been shown that multilingual transformer models are able to predict human reading behavior when fine-tuned on small amounts of eye tracking data. As the cumulated prediction results do not provide insights into the linguistic cues that the model acquires to predict reading behavior, we conduct a deeper analysis of the predictions from the perspective of readability. We try to disentangle the three-fold relationship between human eye movements, the capability of language models to predict these eye movement patterns, and sentence-level readability measures for English. We compare a range of model configurations to multiple baselines. We show that the models exhibit difficulties with function words and that pre-training only provides limited advantages for linguistic generalization.

Proceedings of the Workshop on Cognitive Aspects of the Lexicon